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A novel fully-implicit �nite volume method
applied to the lid-driven cavity problem.

Part II. Linear stability analysis
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SUMMARY

A novel �nite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer.
Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid-driven cavity �ow
in a square enclosure. A combination of Arnoldi’s method and extrapolation to zero mesh size allows
us to determine the �rst critical Reynolds number at which Hopf bifurcation takes place. The extreme
sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment
of the singularity points is noted. Results are compared with those in the literature and are in very good
agreement. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of lid-driven cavity �ow of a Newtonian �uid is a particularly alluring one for
the computational �uid dynamicist in view not only of the simplicity of the �ow geometry—
making for easy meshing—but also the richness of the �uid mechanical phenomena realizable
at various Reynolds numbers: corner eddies, �ow bifurcations and transition to turbulence,
amongst them. For a detailed but readable treatise of the �uid mechanics in the driven cavity,
the reader is referred to that of Shankar and Deshpande [1].
In the literature, however, in contrast with the proliferation of papers evaluating the per-

formance of computational algorithms for the incompressible Navier–Stokes equations in the
lid-driven cavity problem, only a handful of papers consider the question of the linear sta-
bility of this �ow. In conformity with expectation, given the reduced severity of the lid-wall
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singularities, the regularized lid-driven cavity problem is more stable than in the unregularized
case. Taking a tangential velocity pro�le u(x)=16x2(1− x)2 along the lid {(x; 1): 06x61}
in the two-dimensional case, Shen [2] was able to compute steady solutions for Reynolds
numbers up to 10 000. However, taking the steady solution at Re=10000 as initial data, a
periodic solution was found at Re=10500; his Chebyshev code thus indicating the presence
of a Hopf bifurcation somewhere in the interval [10 000; 10 500]. Another bifurcation was
believed to occur at a critical Reynolds number in the interval [15 000; 15 500] with the �ow
becoming two-periodic. Both Batoul et al. [3] and Botella [4] con�rmed Shen’s observation
of a Hopf bifurcation at a critical Reynolds number in the range [10 000; 10 500] by com-
puting a solution to the same regularized problem at a Reynolds number of 10 300 starting
from a steady solution at Re=10000. In both cases a periodic �ow was reached, the period
based on the kinetic energy being 3.03 for Batoul et al. and 3.0275 for Botella. A �nite ele-
ment method, in combination with the simultaneous inverse iteration method of Jennings [5],
was used by Fortin et al. [6] in 1997 to compute a subset of the eigenvalues for the linear
stability problem. The �rst critical eigenvalue was found at a Reynolds number of approxi-
mately 10 255, consistent with the results of Shen [2]. However, the calculated fundamental
frequency for the periodic �ow was f≈ 0:331; rather di�erent from that of Shen. Recent
computations by Leriche and Deville [7] for the same regularized problem at a Reynolds
number of 10 500 yielded a periodic solution with fundamental frequency f≈ 0:330, in good
agreement with previous results. As a case in between the regularized lid pro�le of Shen [2]
and the unregularized constant lid-velocity u(x)=1, Leriche and Deville [7] also considered
the high-order polynomial approximation u(x)= (1− x14)2 where the lid was now de�ned to
be {(x; 1): −16x61}. A direct numerical simulation by the authors with their Chebyshev-�
method at Re=8500 gave rise to a periodic solution with fundamental frequency 0.434 and
a kinetic energy signal exhibiting a period of 2.305. Thus the critical Reynolds number had
already been exceeded.
The solution to the high-order regularized problem obtained by Leriche and Deville [7] was

in good agreement with the results of computations by other authors on the unregularized
problem: in two recent papers Pan and Glowinski [8] and Kupferman [9] both obtained limit
cycle solutions at Re=8500 with the kinetic energy period of Kupferman’s calculations equal
to 2.5 approximately. The results of Botella and Peyret [10] indicated a kinetic energy period
of 2.246 at a Reynolds number of 9000.
It would seem that very few authors have wished to commit themselves to stating a value

for the �rst critical Reynolds number Recrit for lid-driven cavity �ow. The reasons for this
would certainly include the cost of determining the Hopf bifurcation point, as well as the
computational di�culties associated with its accurate evaluation. For a detailed consideration
of these points we refer the reader to the discussion by Poliashenko and Aidun [11] where
three types of strategy (time evolution, test function and direct approaches) for analyzing
the stability of equilibrium states and their bifurcation are presented. Additionally, we should
add that the computation of the critical Reynolds number is a stringent test of the quality of
the numerics, and more so, possibly, than that which is involved in comparisons of various
variable values (stream function, velocity components, etc.). This is borne out in the numerical
results to be presented in this paper, but the magni�cation brought to bear by critical Reynolds
number calculations on the di�erences between one scheme and another has been seen already
in the literature, in the comparison performed by Gervais et al. [12], for example, of di�ering
�nite element dicretizations for lid-driven �ow. Interestingly in this paper the introduction of
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SUPG-type stabilization via an enrichment of the velocity trial space with cubic bubbles led to
an over di�usive scheme and a critical Reynolds number (9200) which was well outside the
range predicted by the second-order �nite elements tested. Thus streamline upwinded methods,
although enhancing stability, may compromise accuracy to the point that the predicted critical
Reynolds numbers are of questionable value. No upwinding or arti�cial viscosity model is
used in the �nite volume scheme described in this paper.
Although, at the time of writing, the �rst critical Reynolds number for the square two-

dimensional lid-driven cavity problem is still not known, a consensus seems to be emerging
that Recrit ≈ 8000. Poliashenko and Aidun [11] used a direct method for the computation of the
critical Reynolds number by augmenting the generalized eigenvalue problem with normalizing
conditions on the real and imaginary parts of the eigenvectors. Recrit was then determined as
part of the solution of the enlarged system and on their �nest mesh a value of Recrit ≈ 7763
was predicted with a fundamental frequency of about 2.863. Excellent agreement with the
Poliashenko and Aidun value was obtained by Cazemier et al. [13]. The authors employed
a proper orthogonal decomposition (POD) of the �ow in a square cavity at Re=22000 in
order to construct a low-dimensional model for driven cavity �ows. Only the �rst 80 POD
modes were used but these were shown to capture 95% of the �uctuating kinetic energy. By
linear extrapolation of the real parts of the most dangerous eigenvalues computed using the 80
dimensional model, Cazemier et al. predicted a critical Reynolds number of 7819, just 0.7%
greater than that of Poliashenko and Aidun. A second-order �nite element method and the
iteration method of Jennings [5], enabled Fortin et al. [6] to conclude that the critical Reynolds
number was around 8000. Since the most dangerous eigenvalues crossed the imaginary axis as
a complex conjugate pair, and since the amplitude of the fundamental frequency at the point
of bifurcation was very small (9× 10−5) in their computations, su�cient evidence had been
amassed by Fortin et al. to support the conclusion that the bifurcation is a supercritical Hopf
bifurcation. From the scanty evidence available in the literature, two-dimensional driven cavity
�ow in non-square (but still rectangular) domains, or subject to three-dimensional in�nitesimal
perturbations, is less stable than that in square cavities with two-dimensional disturbances. See
References [11, 14].
The present paper is organized as follows: in Section 2 we begin by recalling the Navier–

Stokes equations and proceed to consider the behaviour with time of in�nitesimal perturba-
tions. The implicit �nite volume scheme introduced in Part I of this paper [15] is used to
discretize the generalized eigenvalue problem (GEVP). This method involves multiplication
of the primitive variable-based momentum equation with the vector normal to a control vol-
ume boundary, thus eliminating the pressure term from the governing equations when the
control volume boundary integral is evaluated. The algebraic system for the nodal values of
the eigenfunctions is derived. In Section 2 we also explain how we will use the method
of Arnoldi [16, 17] for the accurate determination of the most dangerous eigenvalues that
appear when the steady base �ow is subjected to two-dimensional in�nitesimal perturbations.
Section 3 is then dedicated to a discussion of the numerical results. Computations are per-
formed on three meshes of increasing mesh density; with the �nest of which are associated
132 098 degrees of freedom. For the linear stability calculations, di�erent size Krylov spaces
in Arnoldi’s method are chosen to con�rm the good accuracy of the eigenspectrum near the
imaginary axis. Linear interpolation of the real parts of the most dangerous eigenvalues for
the three meshes and extrapolation to zero mesh size of the curve �tted to the Recrit-control
volume size data, give us a predicted Recrit of 8031.93—a 0.40% di�erence from that of Fortin
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et al. [6], 2.72% di�erence from that of Cazemier et al. [13] and 3.46% di�erence from that
of Poliashenko and Aidun [11].

2. LINEAR STABILITY ANALYSIS

The incompressible unsteady Navier–Stokes equations may be written in dimensionless form
over some domain �⊂R2 as

∇ · u=0 (1)
@u
@t
+ (u · ∇)u=−∇p+ 1

Re
∇2u (2)

where, in the usual notation, u=(u; v) denotes the velocity �eld, p the pressure and Re is a
Reynolds number.
In Part I of this paper we showed that integration of (1) over a �nite volume �i; j and

multiplication of Equation (2) with a vector normal to the boundary @�i; j of �i; j, followed
by integration around @�i; j led to ∮

@�i; j
n · u ds=0 (3)

and ∮
@�i; j

n×
[
@u
@t
+ (∇× u)× u+ 1

Re
∇× (∇× u)

]
ds= 0 (4)

respectively. To study the linear stability of the steady base �ow velocity u=U, computed
using Newton’s method as described in Part I of this paper [15], we consider the behaviour
with time of the in�nitesimally perturbed �ow

u=U(x) + v(x) exp(�t) (5)

Inserting (5) into (3) and (4), assuming U to be an exact solution to the steady Navier–Stokes
equations and neglecting quadratic terms in v we get∮

@�i; j
n · v ds=0 (6)

and ∮
@�i; j

n×
[
(∇×U)× v+ (∇× v)×U+ 1

Re
∇× (∇× v)

]
ds= − �

∮
@�i; j

n× v ds (7)

The evaluation of the line integrals appearing in (6) and (7) follows very closely the ideas
employed for the solution of the steady equations of linear momentum and conservation of
mass described in Section 2.2 of Part I [15]: the line integrals are computed using the mid-
point rule and in (7) a perturbation vorticity vector �=∇× v is de�ned at the centre of
each �nite volume. Face values of vorticity are then determined from simple averages of the
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Table I. Pseudo-code for Arnoldi’s method. hi; j is the (i; j)th element of an upper
Hessenberg matrix H . The vectors x1;x2; : : : ;xm form an orthonormal system by con-

struction (modi�ed Gram-Schmidt algorithm).

cell-centred values in the cells either side of the face in question. The end result of following
this procedure for the evaluation of (6) and (7) is a discrete algebraic system for the nodal
values of v of the form

Ax=�Mx (8)

A being almost the same (by construction) as the coe�cient matrix arising from the dis-
cretization of the continuity equation and momentum equation, described in Section 2.2 of
Reference [15], the sole di�erence being that nodal values of un (the nth Newton iterative
value of velocity) are now replaced with the corresponding nodal values of U. The matrix M
in (8) is block bi-diagonal. The GEVP (8) is solved by applying the Arnoldi method [16, 17]
to the equivalent system

Cx=�x (9)

where C=A−1M and �=�−1. A pseudo-code form of Arnoldi’s method for a Krylov space
of dimension m is given in Table I. The procedure leads to the construction of an m×m upper
Hessenberg matrix H whose eigenvalues (the so-called Ritz values �̂) are approximations to
eigenvalues � of C. Since Arnoldi’s method results in fastest convergence to the extremal
eigenvalues of C, the best resolution of the eigenspectrum will be for eigenvalues � of
the pencil A − �M nearest the origin. In fact although—as will be seen in the numerical
results—the imaginary axis is �rst crossed by a complex conjugate pair of eigenvalues, these
are supposed to be adequately approximated by the reciprocals �̂−1 of the corresponding
Ritz values. Incorporating a complex shift [18], although desirable from the point of view
of accuracy, would necessitate working in complex arithmetic and increase signi�cantly the
computational cost. The Ritz values of H are computed by using the Intel Math Kernel Library
which uses a multishift form of the upper Hessenberg QR algorithm.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:79–88



84 M. SAHIN AND R. G. OWENS

3. NUMERICAL RESULTS

The use of the steady Navier–Stokes solver described in Part I of this paper [15] and Arnoldi’s
method (see Section 2) enable us to compute the �rst critical Reynolds number at which a
Hopf bifurcation occurs. This is done by inspecting the real part of the most dangerous
reciprocal Ritz value pair �̂−11;2. For any given mesh this is done for a variety of Krylov space
dimensions m and the process repeated over a range of Reynolds numbers until the real part of
the aforementioned reciprocal Ritz values is positive. For reasonable accuracy the incremental
step size in Reynolds number during the search for a Hopf bifurcation should be kept as small
as possible. The critical Reynolds number on a given mesh is then determined by a linear
interpolation between the last point on the graph of �(�̂−11;2) vs Re having �(�̂−11;2)¡0 and the
�rst with �(�̂−11;2)¿0. For the �nest mesh the critical Reynolds number is determined to be
Re=8069:76. The computed streamlines and vorticity contours at this Reynolds number are
given in Figure 1. The complete reciprocal Ritz value spectrum computed at this Reynolds
number with a Krylov subspace dimension m=250 is presented in Figure 2 and the values
of the �rst ten leading eigenvalues is given in Table II for further comparison. For the
eigenspectrum we observe good agreement with the results of Fortin et al. [6]. The imaginary
part of the leading eigenvalue is computed on mesh M3 to be 2.8251 which is also in good
agreement with the corresponding value (2.8356) of Fortin et al. [6] bearing in mind the fact
that the two imaginary parts (ours and that of Fortin et al.) are computed at rather di�erent
Reynolds numbers. The critical Reynolds numbers are also computed with meshes M1 and
M2. The precise critical values are tabulated in Table III. The Krylov space dimension m
corresponding to mesh M3 and shown in the third column is the largest that we can a�ord
with the current PC. Columns 4 and 5 detail, respectively, the real and absolute value of the

Figure 1. Streamlines and vorticity contours computed at critical Reynolds number of 8069.76 with
mesh M3. The stream function contour levels shown are −0:11, −0:09, −0:07, −0:05, −0:03, −0:01,
−0:001, −0:0001, −0:00001, 0.0, 0.00001, 0.0001, 0.001 and 0.01. Contour levels for the vorticity plot

are −5:0, −4:0, −3:0, −2:0, −1:0, 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:79–88



PART II. LINEAR STABILITY ANALYSIS 85

Figure 2. Reciprocal Ritz values computed on mesh M3 at Re=8069:76
with Krylov space dimension m=250.

Table II. The �rst 10 reciprocal Ritz values computed on mesh M3 at Re=8069:76.

n �R �I

1 −1:9025× 10−7 ±2:8251
2 −7:3257× 10−3 0.0000
3 −1:4161× 10−2 ±0:9576
4 −2:4387× 10−2 0.0000
5 −2:5916× 10−2 ±1:9062
6 −3:7116× 10−2 ±0:9551
7 −4:5205× 10−2 ±2:8520
8 −4:9557× 10−2 ±3:9063
9 −5:0851× 10−2 0.0000
10 −5:3889× 10−2 ±3:3969

imaginary parts (�R and �I) of the most dangerous pair of reciprocal Ritz values computed at
the interpolated critical Reynolds number. We note from the spread of values in the second
column of Table III that critical Reynolds number calculations would seem to be a much more
discerning measure of solution accuracy than, for example, the streamline or velocity values
that are habitually presented in the literature (see Table II of Reference [15]). Thankfully, for
any given mesh, �R was not found to be an overly sensitive function of m. As an example,
in Table IV we show the ten reciprocal Ritz values having largest real parts, as computed on
mesh M1 with Krylov spaces of dimensions m=250 and 500. Very good agreement in both
the real imaginary parts of these leading reciprocal Ritz values can be seen.
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Table III. Computed critical Reynolds numbers Rec(h) for meshes M1 to M3. The �nal
value of Rec(h) is the extrapolated value Rec.

Mesh Rec(h) m �R �I

M1 8244.55 250 −5:9487× 10−8 ±2:8315
M2 8109.38 250 −1:7769× 10−7 ±2:8256
M3 8069.76 250 −1:9025× 10−7 ±2:8251
Extrap 8031.92 — — —

Table IV. 10 leading reciprocal Ritz values computed at Re=8244:55 on mesh M1 with
Krylov subspace dimensions m=250 and 500.

m=250 m=500

�R �I �R �I

−5:9487× 10−8 ±2:8315 −4:7800× 10−8 ±2:8315
−7:0198× 10−3 0.0000 −7:0198× 10−3 0.0000
−1:4154× 10−2 ±0:9643 −1:4154× 10−2 ±0:9643
−2:3571× 10−2 0.0000 −2:3571× 10−2 0.0000
−2:4539× 10−2 ±1:9159 −2:4539× 10−2 ±1:9160
−3:6512× 10−2 ±0:9593 −3:6512× 10−2 ±0:9593
−4:0236× 10−2 ±2:8600 −4:0234× 10−2 ±2:8600
−4:4007× 10−2 ±3:8954 −4:4746× 10−2 ±3:8951
−4:8049× 10−2 ±3:3908 −4:8055× 10−2 ±3:3908
−4:9438× 10−2 0.0000 −4:9438× 10−2 0.0000

In order to estimate a value for the critical Reynolds number based on a zero mesh size
(Rec, say), a relationship was sought of the form

Rec(h)=Rec + chp (10)

between Rec and the critical Reynolds number Rec(h) computed on a mesh having average
cell length h. Thus, identifying an average cell length h with mesh M1, we have

Rec(h)− Rec(2h=3)
Rec(h)− Rec(h=2) =

(Rec(h)− Rec)− (Rec(2h=3)− Rec)
(Rec(h)− Rec)− (Rec(h=2)− Rec)

=
chp − c( 23 )php
chp − c( 12 )php

=
1− ( 23 )p
1− ( 12 )p

=
8244:55− 8109:38
8244:55− 8069:76 (11)

which yields a solution p≈ 2:4906.
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Figure 3. Critical Reynolds number Rec(h) plotted as a function of the average �nite volume cell size h.
The equation for the continuous curve drawn through the three data points is given by (10).

Now

Rec − Rec(h)
Rec − Rec(h=2) =

chp

c( 12 )
php

=2p (12)

Therefore, rearranging, we get

Rec =
1

2p − 1[2
pRec(h=2)− Rec(h)] (13)

and with p as calculated above we get Rec≈ 8031:93. In Figure 3 we present a graph of
both the interpolatory function given in Equation (10) and the data points corresponding to
the critical values of the Reynolds number computed with the three meshes M1–M3. The
extrapolated result agrees well with the prediction of Fortin et al. [6] (Rec≈ 8000), and
represents only a 3.46% di�erence from the value of Rec calculated by Poliashenko and
Aidun [11] (Rec = 7763) and a 2.72% di�erence from the Rec value of Cazemier et al. [13]
(Rec = 7819). Most probably, the introduction of small leaks in the upper corners of the cavity
in the present numerical method smooths out the solution and leads to the �ow becoming
unstable at a slightly larger critical Reynolds number.

4. CONCLUSIONS

In this paper we have presented application of a novel implicit �nite volume method to the
linear stability analysis of a lid-driven cavity �ow. The method is combined with Arnoldi’s
method for the determination of the linear stability properties. We have obtained a �rst critical
Reynolds number in very good agreement with the few others published to date. We observed
that its value is highly sensitive to the accuracy of the method and to the treatment of the
singularities. Although eigenvalue calculations are computationally very expensive, the block
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banded matrix structure of the coe�cient matrix in the GEVP and the use of Arnoldi’s method
allows us to compute the �rst 250 eigenvalues using the �nest mesh.
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